Автоматическая внешняя калибровка камер на основе анализа траекторий движений объектов

1. Введение. Всеобщей тенденцией в развитии систем видеонаблюдения является разработка алгоритмов трекинга (слежения за объектами), которые очень важны в местах скопления людей и автомобилей, таких, как аэропорты, улицы города, автопарковки и т.д. Важным вопросом при проектировании алгоритмов трекинга является внешняя калибровка камер, т.е. определение под каким углом расположены камеры в реальном пространстве. Вопросам внешней калибровки камер, уделено внимание в некоторых публикациях, например, в [1, 2]. В ряде публикаций освещены подходы к внешней калибровки камер по входному изображению и известной геометрии рассматриваемых объектов с выделением проблем: PnP, PnL, PnA [3]. Однако данные подходы невозможно использовать для автоматической внешней калибровки камер, когда направления камер определяются по мере поступления данных из окружающего мира. В данной работе предлагается подход к автоматической внешней калибровке камер, в котором участие человека сводится к минимуму.
В большинстве случаев примерное расположение (координаты) камер в пространстве известно. Приняв к сведению эту информацию, можно значительно упростить калибровку камер. Пользователям систем видеонаблюдения хотелось бы, чтобы внешняя калибровка осуществлялась автоматически, например, в процессе того, как какие-либо объекты перемещались внутри системы, а система видеонаблюдения сама корректировала и определяла направления камер.

2. Постановка задачи. Есть N > 1 камер с известными координатами в пространстве (здесь и далее будем понимать под координатами, только координаты X и Y без высоты). Камеры работают в приблизительно одинаковых режимах: частота кадров, разрешение. Области зрения M камер (2 ≤ M ≤ N) пересекаются друг с другом, например, попарно. В областях зрения камер происходит перемещение объектов, причем в системе видеонаблюдения может находиться несколько объектов. Необходимо определить углы поворота максимально возможного количества камер. На вход поступают видеопотоки с камер и их координаты в пространстве. На выходе должен быть такой результат калибровки, что для каждой камеры присутствует следующая информация:
• наиболее вероятный угол поворота (или неопределенный);
• наличие пересечений области зрения камеры с областями зрения других камер;
• возможные переходы объектов из области зрения камеры в области зрения других камер.


( Читать дальше )