Известен подход к сегментации с использованием алгоритма kmeans, и я тоже решил его попробовать. Материал нашел
здесь.
Переделал код под версию 2.4.1, который вы можете видеть ниже
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
Mat src = imread("lena.jpg");
imshow("original", src);
// Размытие
blur(src, src, Size(15,15));
imshow("blurred", src);
Mat p = Mat::zeros(src.cols*src.rows, 5, CV_32F);
Mat bestLabels, centers, clustered;
// Перевод в нужный формат
vector<Mat> bgr(3);
split(src, bgr);
for(int i=0; i<src.cols*src.rows; i++) {
p.at<float>(i,0) = (i/src.cols) / src.rows;
p.at<float>(i,1) = (i%src.cols) / src.cols;
p.at<float>(i,2) = bgr[0].data[i] / 255.0;
p.at<float>(i,3) = bgr[1].data[i] / 255.0;
p.at<float>(i,4) = bgr[2].data[i] / 255.0;
}
// Kmeans в действии
int K = 8;
cv::kmeans(p, K, bestLabels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0),
3, KMEANS_PP_CENTERS);
(
Читать дальше
)