Решение проблемы низкой FPS на некоторых USB камерах

Столкнулся с проблемой в Windows, что камеры на новых ноутбуках и некоторые новые камеры при разрешениях выше 640x480 дают низкое значение FPS использованием видеопотока OpenCV (неважно Си или Си++ интерфейс).
В моем случае было 3 камеры (2 внешние и одна ноутбука), которые ставили разрешение 1280x760, но только одна при этом давала 30 FPS, остальные две камеры давали значение 10 FPS.

Естественно первая идея — установить FPS с помощью CV_CAP_PROP_FPS, но оно не работает для камер. Тогда пришлось смотреть исходники OpenCV и выяснять в каких режимах работает камера.


( Читать дальше )

DataMatrix Windows FREE Reader

После распознавания кода происходит эмуляция нажатий клавиш клавиатуры (так работает часть сканеров бар-кодов), поэтому встроить данное решение в свое программное обеспечение не вызовет трудностей. Поскольку результат распознавания будет выдаваться в активное окно. Программа распознает код и с интервалом в 5 секунд эмулирует нажатие клавиш клавиатуры, передавая декодированную информацию (с символом конца строки в конце) в находящееся в фокусе окне.

Cкачать здесь:
http://intbusoft.com/download/products/DataMatrixReader.exe

Распознавание и слежение за знаком скорости

Распознавание знака скорости и слежение за ним. Все выполняется довольно быстро — на 1 ядре процессора AMD FX(tm)-6100 Six-Core выделенная зона распознается за 0.017с. (полное FullHD изображение где-то в среднем на одном ядре за 0.032с — но анализ всего изображения не нужен. Достаточно распознавать указанную область).

iANPR SDK 1.4

Вышла версия SDK для распознавания автомобильных номеров версии 1.4
Изменения:
— добавление распознавания двухстрочных номеров Российской Федерации;
— добавление возвращения типа номера для номеров Российской Федерации;
— исправление ошибок утечки памяти в функциях anprPlateMatRect и anprPlateMatRectXML.

Перейти к странице продукта

Контурный анализ - детектирование зашумленного бинарного объекта

Бинарный объект

Бинарный объект – это объект, созданный человеком, и находящийся в поле зрения камеры. К таким объектам относятся дорожные знаки, автомобильные номера, баркоды и т.п. Часто эти объект имеют контур, по которому они достаточно хорошо детектируются. Однако возникают ситуации, когда объекты серьезно наклонены к оси камеры в нескольких плоскостях, а при этом на них накладывается шум:

Здесь: (а) исходный объект, (б) искаженный объект в результате поворота к камере, (в) зашумленный объект
Для правильного распознавания объекта необходимо провести перспективное преобразование. Но для этого необходимо получить 4 точки бинарного объекта.
Цель данной публикации: определить 4 точки в зашумленном объекте изначальной прямоугольной формы.


( Читать дальше )

iANPR SDK 1.3 Linux

Вышла версия 1.3 iANPR SDK для Linux
Страница продукта:
http://intbusoft.com/rus/products/iANPR/
Страница скачивания:
http://ianpr.org/download.htm

Пример iANPRcapture_motion на C# для iANPR SDK

1 О предназначении программы

Программа iANPRcapture_motion_CShrp предназначена для демонстрации возможностей iANPR SDK в вычислении траектории движения автомобильного номера и детектирования пересечения номером заранее заданных линий, т.е. для демонстрации возможности реализации функционала детектирования въезда-выезда автомобилей с помощью iANPR SDK. Эта программа написана на языке C# и является аналогом программы iANPRcapture_motion, написанной на языке С++. Эти и другие примеры использования распространяются в составе iANPR SDK.

2 Пример использования

Пример работы программы показан в следующем ролике.




( Читать дальше )

iANPR SDK 1.3 Windows

Вышла новая версия iANPR SDK для Windows, что нового:
— добавлено распознавание базовых номеров Казахстана, Туркменистана, грузовых автомобилей Беларуси в одну версию с распознаванием номеров Российской Федерации;
— немного повышено качество распознавания номеров Российской Федерации;
— исправлены примеры и добавлены новые.

http://intbusoft.com/rus/products/iANPR/

Проект стартовал! Присоединяйтесь!

Проект «Распознавание изображений в сфере ритейла» стартовал!

Вы все еще сомневаетесь, включаться ли в проект? — Узнайте, кто уже участвует, наверняка, вы отлично впишитесь.

В проекте принимают участие более 260 человек из 12 стран, включая Испанию, Чехию, Литву и США.
Города-лидеры по числу участников: Москва, Иркутск, Санкт-Петербург, Киев и Екатеринбург.
Представителей прекрасной половины человечества на проекте 15%.
Большинство участников — это IT-специалисты и студенты.
Среди специалистов больше всего разработчиков, инженеров и программистов.
Cамые часто встречающиеся специальности: математическое моделирование, прикладная математика, информационные системы и технологии.

ТОП-5 вузов:
1. Национальный исследовательский Иркутский государственный технический университет,
2. Московский физико-технический институт (государственный университет),
3. Московский государственный университет имени М.В.Ломоносова,
4. Санкт-Петербургский государственный университет,
5. Национальный исследовательский Томский политехнический университет.

Вы уже имеете опыт в сфере распознавания изображений или обучаетесь на технической или математической специальности? — Тогда регистрируйтесь для участия в проекте и вступайте в борьбу за главный приз!

DIGITS DEVBOX: САМАЯ МОЩНАЯ В МИРЕ ПЕРСОНАЛЬНАЯ СИСТЕМА ГЛУБОКОГО ОБУЧЕНИЯ

Созданная командой инженеров NVIDIA, система DIGITS DevBox является ядром комплексной платформы для ускорения исследований глубокого обучения. Каждый компонент DevBox, начиная с четырех карт GPU TITAN X и заканчивая памятью и интерфейсами, максимально оптимизирован, чтобы обеспечить наиболее эффективную работу для самых сложных задач глубокого обучения

Данная система поставляется с предустановленным программным обеспечением, которое необходимо ученым и исследователей для создания собственных глубоких нейронных сетей. В список приложений входят пакет программ DIGITS, самые популярные платформы глубокого обучения Caffe, Theano и Torch, а также cuDNN 2.0 – GPU-ускоренная библиотека для задач глубокого обучения от NVIDIA.

И все это заключено в экономичный, тихий, хорошо охлаждаемый корпус с красивым дизайном, который легко помещается под столом и питается от обычной розетки. Самые первые результаты такого многопроцессорного обучения показывают, что DIGITS DevBox обеспечивает производительность почти в четыре раза выше по сравнению с одним TITAN X в тестах глубокого обучения. С помощью DIGITS DevBox
натренировать сеть AlexNet можно всего за 13 часов, тогда как обычному ПК на базе самого быстрого GPU потребовалось бы более двух суток, а системе на базе CPU — больше месяца.

Подробнее о NVIDIA DIGITS DevBox